PAR/CCM-28/13

2014

ELECTRONICS

SECOND PAPER

Full Marks : 200

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) How does discrete time signal differ from digital signal? Define the shifted unit sample sequence $\delta(n-3)$ and draw the graph of the same. 3+2=5
 - (b) What is linear time invariant system? The output y(t) and input x(t) of a system are related as

y(t) = 3x(t) + 5

Is the system linear?

3+2=5

(c) Define Dirac delta function $\delta(t)$ and unitstep function u(t). List their properties.

4+3=7

14T-100/102

(Turn Over)

- (d) Evaluate the following integrals: 4+4=8
 - (i) $\int_{-\infty}^{\infty} \delta(t)(t^2+1)dt$
 - (ii) $\int_{3}^{5} \delta(t-1)(t^3+4t+2)dt$
- 2. (a) Define DFT and IDFT.

5

5

- (b) Show that DTFT of a discrete signal x(n) is periodic.
- (c) Prove the following convolutions: 3+3=6(i) $\delta(t) * \delta(t) = \delta(t)$ (ii) u(t) * u(t) = tu(t)
- (d) Find the convolution of $x_1(t)$ and $x_2(t)$, where $x_1(t) = \sin t \cdot u(t)$ and $x_2(t) = u(t)$.
- (e) Define causality and stability of a system. Determine the conditions for causality and stability in terms of impulse response of the system *h*(*t*).
- 3. (a) Prove the following Fourier transform theorems:

If $v(t) \leftrightarrow V(f)$ and $w(t) \leftrightarrow W(f)$ then $v(t) * w(t) \leftrightarrow V(f) W(f)$ and $v(t) \cdot w(t) \leftrightarrow V(f) * W(f)$ 5+5=10

14T-100/102

(Continued)

(b) Given single rectangular pulse v(t) as shown in figure below:

Find its energy and Fourier transform.

Also plot the spectrum.

15

- 4. (a) Define edge pixel and edge. Mention the basic edge model and draw their intensity profiles. 2+3=5
 - (b) Describe a region-based image segmentation method.
 - (c) Suggest an algorithm based on fuzzy concept for boundary extraction. 5
 - (d) What is the difference between image enhancement and image restoration?
 What are the sources of noises in image?
 3+2=5
 - (e) Mention the fundamental steps performed in edge detection and briefly describe a method for edge detection.

14T-100/102

(Turn Over)

5

5. (a) Derive field expressions for TE modes in rectangular waveguide by separation of variable technique. (b) Write briefly on the earth-ionosphere waveguide.	0
is 1.76 dB. (b) Distinguish between the radiation pattern of isotropic, directional and empidirectional antenna.	10
(c) A television transmitting antenna mounted on a height of 120 m radiates 15 kW of power equally in all directions in azimuth at a frequency of 50 MHz. Calculate— (i) the maximum line of sight range; (ii) the field strength at a receiving antenna mounted at a height of 16 m at a distance of 12 km. 5+	5=10
7. (a) Derive the general link design equation for a satellite. (b) Compare the performance characteristics of FDMA, TDMA and CDMA.	e
14T—100/102	nued)

- (c) Explain what is meant by-
 - (i) ground wave;
 - (ii) surface wave;
 - (iii) space wave propagation.

9

- 8. A mobile is located 5 km away from a base station and uses a vertical $\frac{\lambda}{4}$ monopole antenna with a gain of 2.55 dB to receive cellular radio signals. The E-field at 1 km from the transmitter is measured to be 10^{-3} V/m. The carrier frequency used for this system is 900 MHz.
 - (a) Find the length and the effective aperture of the receiving antenna.

5+5=10

(b) Find the received power at the mobile using the two-ray ground reflection model assuming the height of the transmitting antenna to be 50 m and receiving antenna 1.5 m above ground.

15

* * *