PAR/CCM-27/13

8

13 014

ELECTRONICS

FIRST PAPER

Full Marks: 200

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) Draw the *I-V* characteristics of a *p-n* junction diode—
 - (i) under dark condition;
 - (ii) when exposed to solar light. 3+3=6
 - (b) Explain in detail both the characteristics physically.
 - (c) What is Fermi level? Derive the expressions for Fermi level in intrinsic, P-type and N-type semiconductors.
- 2. (a) Explain the following:
 - (i) Mobility
 - (ii) Conductivity
 - (iii) Energy gap
 - (iv) Intrinsic concentration

Also give the reason about the variation of these parameters with temperature.

4+4=8

14T-100/101

(Turn Over)

(b) When a diode is reverse biased with 6 V, it has a junction capacitance of 10 pF. When the reverse bias increases to 10 V, the capacitance drops to 8.43 pF. Find whether the junction is abrupt or graded.

(c) Explain the I-V characteristics of tunnel diode with the help of energy band diagram.

3. (a) Design a voltage divider circuit in Fig. 1 given below to operate from 12 V supply. The bias conditions are to be $V_{CE}=3$ V, $V_{E}=5$ V and $I_{C}=1$ mA.

(b) Draw the circuit diagram for a BJT differential amplifier using a single polarity supply. Explain the d.c. and a.c. operations of each circuit. Write equations for voltage gain and input, output impedance for a differential amplifier.

14T-100/101

(Continued)

10

- (c) A Zener diode shunt regulator has to supply a load current which varies from 0 to 200 mA at 10 V. The input to the regulator varies from 15 V to 20 V. Assume that Zener diode voltage stabilizes at a minimum current of 10 mA. Calculate the value of the series resistor and power rating of the Zener diode.
- 4. (a) Write in short on the following observed in BJT: 5×3=15
 - (i) Base width modulation
 - (ii) Emitter band gap narrowing
 - (iii) Current crowding
 - (b) For the transistor amplifier shown in Fig. 2 below, find A_I , A_{V_i} , A_{VS} , R_o and R_i , if h parameters are given as

$$h_{ie} = 1.1 \text{ k}\Omega, h_{re} = 2.5 \times 10^{-4}$$
 $h_{fe} = 50, h_{oe} = 25 \times 10^{-6} \text{ U}$
 V_{cc}

10

Fig. 2

14T-100/101

(Turn Over)

- 5. (a) Discuss briefly about multi-emitter transistor (MET) and its method of fabrication. Also mention the application of MET. 6+3=9
 - (b) Explain MOS capacitor and its fabrication method. Compare MOS capacitor with reverse biased *P-N* junction used as capacitor. 5+3=8
 - (c) Why stick diagrams are important in integrating devices in microelectronics?
 Discuss about various color coding schemes in stick diagram.
 5+3=8
- 6. (a) Draw the circuit diagram of an OP-AMP
 Wien bridge oscillator. Sketch the
 oscillator output waveforms and explain
 the circuit operation. Write the
 frequency equation for the oscillator.
 - (b) Define slew rate of an OP-AMP.

 Calculate the maximum peak output voltage obtainable from a 741 OP-AMP circuit with 100 kHz signal frequency.

 [Assume SR = 0.5 V/µs for a 741].
 - (c) What are different layout design and analysis tools? Discuss CAD tools scheme in detail.

TE MIDWING ON

(Continued)

5

	(a)	List in detail the steps involved in fabricating a monolithic IC. Illustrate the steps with suitable diagrams wherever necessary.	15
	(b)	Define sheet resistance R_s . What is the total length required to fabricate a 20-k Ω resistor whose width is 20 μ m, if R_s = 200 Ω /square? What is the width required to fabricate a 5-k Ω resistor whose length is 25 μ m?	10
8.	(a)	What do you understand by addressing mode of a computer or processor? Write about various addressing modes of $8085\mu P$ with two examples for each one of them.	10
	(b)	Discuss in detail about hardware and software interrupts available in $8085\mu P$.	8
	(c)	Show the arrangement of flag bits in the flag register of $8085\mu P$. Explain the meaning of each one of them.	7