GB/M-06-15A

ELECTRONICS

2006

10

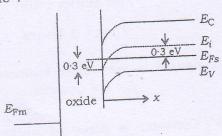
FIRST PAPER

Full Marks: 200

Time: 3 hours

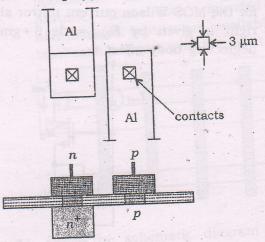
The figures in the margin indicate full marks for the questions

- 1. (a) Consider a piece of uniformly doped germanium with $10^{15} \, \mathrm{cm}^{-3}$ shallow acceptors. Calculate the temperature for which the electron density equals the ionized acceptor density. Ignore the temperature dependence of the energy bandgap and use $E_g = 0.67 \, \mathrm{eV}$.
 - (b) Consider a silicon metal-semiconductor junction with an *n*-type doping given by


$$N_d = N_o \frac{x}{d}$$
 for $x < d$
 $N_d = N_o$ for $x > d$

Calculate the voltage and the capacitance corresponding to a depletion layer width of 2d. Use $N_o = 4 \times 10^{16} \text{ cm}^{-3}$, d = 400 nm, the area = 10^{-4} cm^{-2} and $\phi_i = 0.8 \text{ V}$.

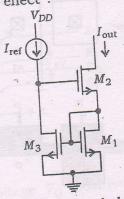
8/X-200/27


(Turn Over)

2. A MOS capacitor is made from Si. When V_G is applied to the gate of the capacitor, the band diagram looks as shown below. Oxide and metal parts are not shown. Answer the questions:

- (a) Is the applied voltage V_G positive or negative? Explain.
- (b) Is the semiconductor p-type or n-type? What is the doping concentration?
- (c) Calculate the number of electrons and holes in the bulk of the semiconductor.
- (d) Calculate the number of electrons and ho<u>les near the</u> surface of the semiconductor.
- (e) Is the semiconductor under depletion, inversion or in flat-band condition?

3. The mask set for a simple rectangular *p-n* junction diode is shown below. The diode is formed in a *p*-type substrate:

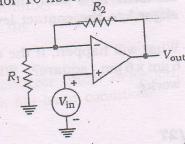


- (a) How many masks are required to fabricate the structure as shown?
- (b) Draw a picture of the layout for the diode, which results when a worst-case misalignment of 3 μm occurs in x-direction on each mask level. Assume that the contact level is aligned to the diffusion level and the metal level is aligned to the contact level.
- (c) What will happen, if the contact hole is 6 μm × 6 μm square? Will the device work?

15

4. Use the small-signal model and nodal analysis to show that the output impedance for the MOS Wilson current mirror shown at right is given by $R_{\text{out}} \approx \text{rds}_2(1+\text{gm}_2 \text{rds}_3)$, neglecting body effect:

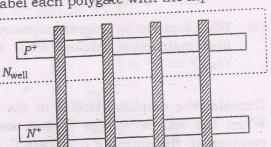
30



5. (a) For the circuit shown below, find the minimum DC open-loop op-amp gain required in order for the closed-loop gain to be accurate within 0.5%. Use $R_1 = 1 \text{ k}\Omega$, $R_2 = 19 \text{ k}\Omega$.

10

(b) If the op-amp has a unity gain bandwidth of $f_T = 1\,\mathrm{GHz}$, find the % settling error if the op-amp is allowed to settle for 10 nsec.


10

8/X-200/27

(Continued)

6. (a) On the layout diagram below, indicate the metal connections required to implement the function F = A⊕B. Assume that both inverted and non-inverted inputs are available and label each polygate with the input used:

- (b) Draw the schematic diagram for the logic gate above.
- 7. (a) All microprocessors have something that is called a program counter. What is this?
 - (b) Give the machine code as a 4-digit hex value for the instruction:

bsf 0×14F,4

(c) Whether the machine code $0 \times 31F2$ represents instruction? (Use w or f for the destination, and ACCESS or BANKED to represent the value of a bit.)

8/X-200/27

(Turn Over)

(d) For a 20 MHz clock, how long does it take to execute the following instructions? (Give the answer in microseconds.)

movff 0×230 , 0×110 clrf 0×002 , f

- (e) What location in program memory is the first instruction fetched from after a reset?
- 8. Consider the amplifier circuit in the figure. When the source voltage V_s has zero d.c. component, the output d.c. voltage V_o is 5 V. Let both BJTs have $\beta = 50$. Determine the d.c. voltages at all the nodes and the d.c.emitter currents of Q_1 and Q_2 :

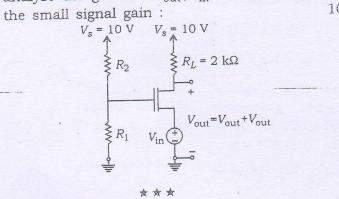
 $R_s = 10 \text{ k}\Omega$ $R_f = 10 \text{ k}\Omega$ $R_g = 10 \text{ k}\Omega$ $R_g = 10 \text{ k}\Omega$ $R_g = 10 \text{ k}\Omega$

8/X-200/27

(Continued)

20

9. In the saturation region, the MOSFET shown in the circuit below has an i_D - v_{DS} relation by $i_D = \frac{K}{2} (v_{GS} - V_T)^3$,


$$K = \frac{1}{2} \text{ mA} / V^3 \text{ and } V_T = 2 \text{ } \forall .$$

$$V_S = 10 \text{ } V \text{ } V_S = 10 \text{ } V$$

$$R_2 \qquad R_L = 2 \text{ } k\Omega$$

Find the relation between R_1 and R_2 that will fix the output bias voltage at 6 V.

10. A small source is added to the circuit above as shown in the figure. Draw a small-signal model for the circuit that cans be used to analyze the gain $G = V_{\text{out}}/V_{\text{in}}$ and calculate

8/X-200/27

GB/M-06-15A

10