

CIVIL SERVICES ACHIEVERS' POINT

CSAP's SMART BOOK

DISASTER MANAGEMENT IN INDIA

HEAD OFFICE: 4th Floor, Dirang Arcade, Krishna Nagar, Maniram Dewan Rd, Chandmari

Centres: Chandmari, Beltola, Silchar, Margherita, Cotton University, Sonapur College, JC College, GC College

Call:9127515541/8811877068

CIVIL SERVICES ACHIEVERS' POINT----CSAP.CO.IN----CIVIL SERVICES ACHIEVERS' POINT Page | 1

CONTENT

SL. NO	CHAPTER	PAGE NO.	
1.	Disaster and Hazard	3	
2.	Natural Disaster	6	
3.	Biological Disaster	39	
4.	Crowd Management	42	
5.	Chemical Disaster	44	
б.	Nuclear Disaster	46	
7.	Disaster Management in India	48	
8.	Evolution of Global Framework on Disaster	56	
	Management		
9.	Disaster Management and Technology	60	

CHAPTER 1 DISASTER AND HAZARD

DISASTER

United Nations Office for Disaster Risk Reduction (UNDRR) defines disaster as "a serious disruption of the functioning of a community or a society at any scale due to hazardous events interacting with conditions of exposure, vulnerability and capacity, leading to one or more of the following: human, material, economic and environmental losses and impacts." (UNISDR 2016).

DM Act 2005 defines disaster as: "Disaster" means a catastrophe, mishap, calamity or grave occurrence in any area, arising from natural or manmade causes, or by accident or negligence which results in substantial loss of life or human suffering or damage to, and destruction of, property, or damage to, or degradation of, environment, and is of such a nature or magnitude as to be beyond the coping capacity of the community of the affected area."

HAZARDS

According to the United Nations International Strategy for Disaster Reduction (UNISDR), a hazard is a natural process or phenomenon that may pose adverse impacts on the economy, society, and ecology, including both natural factors and anthropogenic factors. For example, Typhoons, floods and fire are hazards.

A hazard becomes a disaster when it occurs in an area where many people live or work and it harms them and their property. It is also a threat, a future source of danger with the potential to cause damage to:

- ✓ **People:** Death, injury, disease, and stress
- ✓ Property: Damage to property, economic and monetary loss, loss of livelihood
- ✓ Environment: Loss of flora and fauna, pollution, loss of biodiversity, degradation of land

DISASTER VS HAZARD

DISASTER	HAZARD
Disaster is an event	Hazard is an event that
that occurs	has potential for
suddenly/unexpectedly	causing injury/ loss of
in most cases and	life
disrupts the normal	or damage to property/
course of life in	environment.
affected area. It results	
in loss or damage to	
life, property or	
environment. This	
Loss is beyond the	
coping capacity of	
local affected	
population/ society.	
And therefore, requires	
external help.	

Hazards may be Classified as

Geophysical	Hazard emanating from solid				
hazard	earth.				
Hydrological	This hazard caused due to the				
hazard	occurrence, movement, and				
	distribution of the surface and				
	subsurface freshwater or				
	saltwater.				
Meteorological	Hazard occurs because of short				
hazard	lived micro- to meso-scale				
	extreme weather and				
	atmospheric conditions that				
	could last from minutes to days.				
Climatological	Hazard caused by long-lived,				
hazard	meso to macro-scale				
	atmospheric processes ranging				
	from intra-seasonal to multi-				
	decadal climate variability.				
Biological	Hazard caused by the exposure				
hazard	to living organisms and/or the				
	toxic substances or vector-borne				
	diseases that they may carry				
Extraterrestrial	Hazard caused by asteroids,				
hazard	meteoroids, and comets as they				
	pass near earth, enter the earth's				
	atmosphere, and/or strike the				
	earth, or change in				
	interplanetary conditions				
	that affect the earth's				
	magnetosphere, ionosphere, and				
	thermosphere				

BASIC TERMINOLOGIES

- 1. Natural Disaster: Naturally-occurring destructive incidents, such as Earthquakes, Floods, Droughts, Cyclones, Landslides, Coastal erosion, Avalanche, etc., are Destructive.
- 2. Man-made Disasters: Fire, industrial, technological, transportation, nuclear accidents, biological disaster and war.
- 3. **Vulnerability:** The potential for loss to an individual, community or place because of a disaster that is affected by geographical as well as social conditions.
- **4. Emergency:** Local event within a community that affects a limited number of people or property.
- 5. Disaster Risk Reduction (DRR): Systematic development and application of policies, strategies and practices to minimize vulnerabilities and disaster risks.
- **6. Mitigation:** The process or result of making disaster less severe, dangerous, painful.
- 7. **Preparedness:** Contributes to DRR through measures taken in advance, timely and effective early warnings and the temporary evacuation of people and property from threatened locations.
- 8. Disaster Response: The provision of assistance or intervention during or immediately after a disaster to meet the life preservation of people affected.

RISK AND VULNERABILITY

 Risk is "a measure of the predicted losses resulting from a hazard occurring in a particular place over a particular time". Risk depends on the likelihood of a certain hazardous occurrence and the losses each might bring about.

- Vulnerability: The potential for loss to an individual, community. or place because of a disaster that is affected by geographical as well as social conditions. It includes -
 - ✓ Economic Vulnerabilities: People working in unorganized sectors and people having lack basic amenities, suffer more during the disaster. They can even lose their source of livelihood.
 - ✓ Social Vulnerabilities: During disaster children, the elderly, and differently able, may be unable to protect themselves or evacuate if necessary.
 - ✓ **Physical Vulnerabilities:** Feeble and old homes are more vulnerable.

CAPACITY AND COPING CAPACITY

- Capacity can be characterized as the combination of all the strengths, attributes, and resources available within an organization or community to manage and reduce disaster risks and strengthen resilience.
- **Coping Capacity:** The ability of individuals, groups, and systems to deal with risky situations, disasters, and bad conditions is known as coping capacity.
 - The ability to deal involves ongoing knowledge, access to resources, and effective management, both in regular times and in the face of emergencies or challenging circumstances.
 - ✓ Disaster risks are reduced in part due to coping mechanisms.

DISASTER MANAGEMENT CYCLE

All possible Pre, During, and Post-Disaster Actions, programmes, and measures are included in disaster risk management.

Three important stages of activities which are taken up within disaster risk management are:

- 1. Pre-Disaster: It includes actions made to limit losses to people and property brought on by possible hazards.
 - Pre-disaster risk management includes prevention, mitigation, and readiness, make up a typical disaster management continuum
 - For instance, launching awareness campaigns, bolstering the weak systems already in place, creating strategies for crisis management at the family and community levels, etc.
 - These risk reduction actions are referred

to as mitigation and preparation activities at this stage.

- 2. **During Disaster:** Actions made to ensure that victims' requirements are satisfied, their needs are provided for, and their suffering is kept to a minimum. Emergency response actions are those undertaken during this time.
- 3. **Post-Disaster:** The post-disaster crisis management phase, which entails assistance, intervention, recovery, rehabilitation, and reconstruction.
 - Actions conducted right away when a tragedy hits with the aim of achieving early recovery and rehabilitation of impacted communities.
 - These actions are referred to as Response and recovery efforts.

Disaster Caused by	Natural Events					Accidents			Biological	Disruption of Essential	
	Olmatle				Geological						Setvices
Features	Drought	Cyclone	Tsunami	Floods	Earthquake	Landslide	Industrial	Nuclear	Fire	Epidemics	354
Is Early Warning Possible?	Yes	Limited	Very Limited	Limited	No	No	No	No	No	Yes	Limited
Level of Community participation	Some Extent	Some Extent	Nil	Some Extent	Nil	Nil	Nil	Nil	Limited	Nil	Limited
Duration of Disaster	Few Months	Few Days	Few Hours	Few Days	Few Minutes	Few Minutes	Few Days	Prolonged	Few hours/ day	Prolonged	Few Days
Whether Building Structure important?	No	Yes	Yes	Yes	Yes	Limited	No	No	Yes	No	No
Affected Areas	Large	Large	Large	Medium	Large	Limited	Limited	Medium	Limited	Medium	Large
Is Mitigation measures Possible?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Is Rescue Required?	No	Yes	Yes	Yes	Large Scale	Yes	Yes	Yes	Yes	No	No

DISASTER MATRIX

CHAPTER 2 NATURAL DISASTER

India has faced some of the deadliest disasters in recent history. From natural disasters like earthquakes and floods to man-made disasters like the Bhopal gas tragedy, it is important to manage calamities with proper planning and mitigate these issues fast, reducing the loss of human lives and biodiversity. Disasters in India have founded the National Disaster Management Authority, an apex body that controls all disaster management-related tasks.

Types of Disasters

There are two types of disasters: -

- 1. Natural Disasters
- 2. Man-made or technological disasters

Natural Disasters: A natural disaster is an event that can result in injury, loss of assets and death too. Examples of Natural Disasters are earthquakes, landslides, volcanic eruptions, floods, hurricanes, tornadoes, blizzards, tsunamis, cyclones, wildfires, pandemics etc.

Man-made and technological disasters: Human-caused disasters are the result of technical or human-caused risks. War, civil unrest, stampedes, fires, transport accidents, industrial accidents, conflicts, oil spills, terrorist attacks, and nuclear explosions/radiation few examples.

EARTHQUAKE

An earthquake is a geographical phenomenon that happens due to sudden movement of underneath crustal plates and causes the ground and everything on it to shake violently. It happens when accumulated stress from shifting crustal or lithospheric plates is released. Earthquakes have tectonic origins, that is.

Types of Earthquakes

Tectonic	• Most common type of						
Earthquake	earthquake						
	• It occurs when shifting of						
	plates are responsible for						
	the occurrence of strong						
	tremors, strength at a						
	point of rock due to strain						
	exceeds the strength of						
	the rocks. As a result,						
	fracture develops and the						
	same propagate rapidly						
	through the rock.						
Volcanic	• This occurs because of						
Earthquake	Volcanic activity. Rising						
-	lava or magma beneath						
	active volcanoes causes						
	violent movement of						
	plates results into volcanic						
	earthquakes.						
	• Ex. Earthquake in						
	Indonesia, Andaman &						
	Nicobar Islands						
Collapse	These are small earthquakes in						
Earthquake	underground caverns and						
	mines that are caused by						
	seismic waves produced due						
	to explosion in rocks during						
· ·	mining.						
Explosion	This earthquake is the result of						
Earthquake	the detonation of a nuclear						
	and/or chemical device.						
Reservoir	It occurs in the areas of huge						
Induced	reservoirs like dams.						
Earthquake							

Seismic Zones in India

- There are four seismic zones (II, III, IV, and V) in India based on scientific inputs relating to seismicity, earthquakes that occurred in the past and the tectonic setup of the region.
- **Bureau of Indian Standards (BIS)** is the official agency for publishing seismic hazard maps and codes.
- Earthquakes prone area: 59% of India's territory is vulnerable to earthquakes.

Seismic Zone Designation

Seismic Zone II:

- Area with minor damage earthquakes corresponding to intensities V to VI of MM scale (MM-Modified Mercalli Intensity scale)
- It covers remaining parts (Areas other than Seismic Zone III, IV, V) of the country.

Seismic Zone III:

• Moderate damage corresponding to intensity VII of MM scale.

It covers the parts of Uttar Pradesh, Gujarat • West Bengal, Parts of Punjab, and Rajasthan, Madhya Pradesh, Bihar. Chhattisgarh, Jharkhand, Kerala, Goa, Lakshadweep islands, Maharashtra, Orissa, Andhra Pradesh, Tamil Nadu, and Karnataka.

Seismic Zone IV:

- Major damage corresponding to intensity VII and higher of MM scale.
- It covers the parts of Jammu and Kashmir and Himachal Pradesh, Delhi, Sikkim, parts of Gujarat and small portions of Maharashtra

near the west coast, Rajasthan, Northern Parts of Uttar Pradesh, Bihar and West Bengal.

Seismic Zone V:

- Area determined by pro seismically of certain major fault systems and is seismically the most active region.
- Earthquake zone V is the most vulnerable to earthquakes, where historically some of the country's most powerful shocks have occurred.
- Earthquakes with magnitudes in excess of 7.0 have occurred in these areas, and have had intensities higher than IX.
- It covers Northeast India, Some parts of Jammu and Kashmir, Himachal Pradesh, Uttaranchal, Rann of Kutch in Gujarat, part of North Bihar and Andaman & Nicobar Islands.

Measurement of Strength of Earthquake

Although the shape of earthquake waves is captured by seismographs, the Richter Scale and Mercalli Scale are used to assess the strength and magnitude of earthquakes.

Richter Scale: It was developed by Charles Richter, measures the magnitude of the energy released during the Earthquake. The Richter scale is logarithmic and based on 10 in nature. Although there is no limit to this scale, it has never recorded an earthquake of a magnitude greater than 8.9.

Mercalli Scale: It was developed by Giuseppe Mercalli, and expanded to include 12 degrees of intensity by Adolfo. It measures the intensity of an earthquake based on its real impacts on people, the environment and the Earth's surface. It is a closed-ended linear scale with a range of 1 to 12 or Ito XII, with intensity 1 earthquakes having little impact and intensity 12 earthquakes completely destroying everything.

Earthquake Risk in India

1. India's increasing population and extensive unscientific constructions mushrooming all over keep India at high risk

- 2. During the last 15 years, the country has experienced some major earthquakes which have resulted in enormous losses.
- 3. As per the current seismic zone map of the country, over 59 per cent of India's land area is under threat of moderate to severe seismic hazard (Prone to shaking of MSK Intensity VII and above).
- The Himalayan region has witnessed four earthquakes of magnitude exceeding 8.0 [1897 Shillong (M8.7); 1905 Kangra (M8.0); 1934 Bihar-Nepal (M8.3); and 1950 Assam-Tibet] in the last 50 years.
- 5. The Koyana earthquake (1967) and Killari earthquake in 1993 have endorsed the theory of the emergence of a fault line and energy build-up along the fault line of the river Bhima (Krishna) near Latur and Osmanabad (Maharashtra).
- 6. The increase in earthquake risk is due to a spurt in developmental activities driven by growing
- 7. Urbanisation, globalisation, and economic progress of India's economy.

NDMA Guidelines on Earthquake Management

Guidelines issued by NDMA rest on six pillars of seismic safety for improving the effectiveness of earthquake management in India:

- 1. PILLAR 1: Earthquake Resistant Construction of New Structures: All central ministries and departments and state governments will facilitate the implementation of relevant standards for seismically safe design and construction of buildings and other lifeline and commercially important structures falling within their administrative control such as bridges, flyovers, ports, harbours etc.
- 2. PILLAR 2: Selective Seismic strengthening & retrofitting of existing **Priority** structures and Lifeline Structures: All central ministries and state governments are required to draw up programs for seismic strengthening of priority structures through ULBs and PRIs. Buildings of national importance such as Raj Bhavans. Legislatures, Courts, critical buildings like academic institutions, public utility structures like reservoirs, dams and