Total No. of Printed Pages-7

GB/M-06-33B

2006

PHYSICS

SECOND PAPER

Full Marks: 200

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer all questions

 ${\it Use \ of \ non-programmable \ calculators \ allowed}$

GROUP-A

1. (a) Using Gauss' law in electrostatics, show that the electric intensity near a charged conducting surface in air is

$$\frac{\sigma}{\varepsilon_0} NC^{-1}$$

where σ is the surface density of charge and ϵ_0 is the absolute permittivity of free space in SI units. Show also that the force acting on a unit area of the surface is

 $\frac{\sigma^2}{2\epsilon_0}$

8+4=12

8/X-500/64

(Turn Over)

(b) Two identical spherical liquid drops, each having a radius of 2 mm and carrying a charge of 5×10^{-15} C coalesce to form 'a single drop. What is the potential at the surface of the new drop? [Given, $\varepsilon_0 = 8 \cdot 85 \times 10^{-12}$ SI units]

Or

What do you understand by the polarization of a dielectric? How does it explain the effect of inserting a dielectric slab between the plates of a given capacitor?

4+4=8

- 2. (a) Describe briefly, how an attracted disc electrometer can be used to measure potential difference.
 - (b) A small rectangular coil carrying current is placed in a uniform external magnetic field. Show that the potential energy of the coil is $U = -\vec{p}_m \cdot \vec{B}$, where \vec{p}_m is the magnetic moment of the loop and \vec{B} is the external magnetic field.

seus limi e o Or

Establish the relationship $\overrightarrow{B} = \mu_0 (\overrightarrow{H} + \overrightarrow{M})$ in magnetostatics, where the symbols have their usual meanings.

- (c) Derive an expression for the selfinductance of a long solenoid of length l, total number of turns n and radius r.
- 3. (a) Derive an expression for the magnetic field due to a circular loop of radius R carrying a current at any point on its axis other than its center.
 - (b) There are 1600 turns of mean radius 10 cm in a solenoid of length 20 cm with air inside. A current of 2 A is made to flow through it. Calculate the magnetic field on its axis at a distance of 10 cm inside from one end. What is the value of the field at one end? [Given, $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$] 6+2=8

Or

A long straight wire carries a current of 50 A. An electron is moving towards the wire with a velocity of 10⁷ m/s. Find the force acting on the electron when it is at a distance of 5.0 cm from the wire.

A. Discuss the charging and discharging of a capacitor through a resistance. What is meant by time constant of the circuit?

A capacitor of capacitance 1 μF is discharged through a high resistance. The time taken for half the charge on the capacitor to leak is found to be 10 seconds. Compute the value of the resistance.

16+4=20

8/X-500/64

(Turn Over)

5. (a) What is meant by resonance in an a.c. circuit? What is a series resonant circuit? Derive an expression for the resonant frequency of the circuit. Why is it called an acceptor circuit?

2+2+4+2=10

20

What do you understand by the quality factor Q of a circuit? Show that in a series resonant circuit the bandwidth is given by

$$\Delta f = \frac{R}{2\pi L}$$

where the symbols have their usual meanings. 2+8=10

(b) A 2 kΩ resistor, a 1 mH inductor and a 1 μF capacitor are connected in series across a 120 V, 60 Hz a.c. source. Calculate the impedance of the circuit. What will be the reading of an a.c. voltmeter connected across the resistor?

GROUP-B

6. (a) State and explain Einstein's photoelectric equation. Discuss how it was verified experimentally. 2+5+5=12

8/X-500**/64**

(Continued)

Maximum energy of photoelectrons emitted by a metal surface is $3 \cdot 62 \times 10^{-12}$ erg, when the incident radiation is 3000 Å. When the incident radiation is 5000 Å, the maximum energy of photoelectrons is 0.972×10^{-12} erg. Calculate Planck's constant and the threshold wavelength of the metal. [Given, $c = 3 \times 10^8$ m/s]

5

Or

Give the construction and the working of a photovoltaic cell.

- 7. (a) Explain why there is a short wavelength limit in the continuous X-ray spectrum.

 Establish the relation between the minimum wavelength and the accelerating potential.

 3+5=8
 - (b) State Moseley's law, giving clearly the meanings of the different terms in it. What is the contribution of Moseley's law in the perfection of the periodic table? 3+5=8

Or

Discuss briefly, what is meant by radioactive carbon dating.

8

8/X-500/**64**

(Turn Over)

- (c) An X-ray tube operates at 50 kV and emits a continuous X-ray spectrum. Calculate the shortest wavelength of X-ray emitted. [Given $h = 6.63 \times 10^{-34}$ J-s and $c = 3 \times 10^8$ m/s]
- 8. (a) Define the mean life of a radioactive substance. Show that the mean life is equal to the reciprocal of its decay constant.

 3+7=10
- (b) The activity of a radioactive substance decreases to 1/64 of its original value in 21 days. Calculate the half-life of the substance.

Or

The half-life of radium is 1590 years. In how many years will 1 gram of radium be reduced to 1 centigram?

- (c) Discuss briefly the origin of solar energy.
- 9. (a) Distinguish between controlled and uncontrolled chain reactions in a nuclear fission reaction. What are the conditions for a self-sustained chain reaction?

 4+4=8
 - (b) Explain the function of a moderator in a nuclear reactor.

8/X-500/64

(Continued)

5

_(c)	Write in short, the principle of a cyclotron or a bubble chamber.	4
(d)	Distinguish between primary and secondary cosmic rays.	4
10(a)	Describe the working of a common emitter P-N-P transistor amplifier.	10
<i>(b)</i>	A transistor is connected in common emitter configuration. The collector supply is 8 V and the voltage drop across a resistor of 800Ω in the collector circuit is 0.5V . If the current gain factor α is 0.96 , find the base current.	5
(c)	Mention briefly the salient features on account of which FM receivers are superior to AM receivers.	5
	Or	•

Draw the block diagram of a superheterodyne FM receiver and mention the feature on which it is different from a superheterodyne AM receiver.

3+2=5

青青青